Construction of Membrane-Penetrating Peptide Super-Structures for Design of Artificial Membrane Proteins.
نویسندگان
چکیده
منابع مشابه
investigating the feasibility of a proposed model for geometric design of deployable arch structures
deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...
Structures of membrane proteins
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of natur...
متن کاملComputational design of membrane proteins.
Membrane proteins are involved in a wide variety of cellular processes, and are typically part of the first interaction a cell has with extracellular molecules. As a result, these proteins comprise a majority of known drug targets. Membrane proteins are among the most difficult proteins to obtain and characterize, and a structure-based understanding of their properties can be difficult to eluci...
متن کاملComputational design of membrane proteins.
This article reviews the recent successes of computational protein design techniques applied to integral membrane proteins. This emerging area is still handicapped by significant difficulties in the experimental characterization of the stability and structure of the designed proteins. Nevertheless, by focusing on oligomeric complexes of single-span transmembrane (TM) peptides with detectable ac...
متن کاملPolyethylene Glycol Repairs Damaged Membrane; Biophysical Application of Artificial Planar Bilayer to Mimic Biological Membrane
Polyethylene glycol (PEG) is a hydrophilic polymer, known to be capable to fuse numerous single cells in vitro, to join the membranes of adjacent neurons and giant invertebrate axons, and to seal damaged neural membranes. The molecular mechanism of the action of PEG is still unknown. It is believed that PEG dehydrates membranes and enables their structural components to resolve and rearrange in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: KOBUNSHI RONBUNSHU
سال: 1995
ISSN: 0386-2186,1881-5685
DOI: 10.1295/koron.52.797